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Final Performance Report on AFOSR Grant
FA9550-06-1-0529 (FO16052)

A Grid-Free Particle Method for Electrostatic Plasma
Simulations

PI: Robert Krasny, Department of Mathematics, University of Michigan

August 27, 2007

This grant provided support for a postdoc, Lyudmyla Barannyk, at the University of
Michigan, during the period September 1, 2006 - May 31, 2007, to assist in developing a
grid-free particle method for electrostatic plasma simulations.

1 Objectives

This project is part of a larger effort funded by AFOSR (FA9550-05-1-0199, Major David
Byers), in collaboration with Andrew Christlieb at Michigan State University, that aims
to develop a grid-free particle method for plasma simulations. The majority of plasma
simulations currently use the particle-in-cell (PIC) method [1,2]. The advantage of PIC is
that it uses a fast Poisson solver to obtain the electric field, but the results may exhibit
mesh-induced effects such as artificial diffusion and anisotropy. In addition, geometrically
complex domains present a problem for the fast Poisson solvers typically used in PIC.

The present work seeks to overcome these difficulties and substantially improve the ac-
curacy and efficiency of plasma simulations for a wide range of applications. Our approach
is based on the Lagrangian formulation of charged particle dynamics, in contrast to the
standard Eulerian formulation in terms of the Vlasov-Poisson equation. The Lagrangian for-
mulation leads naturally to a grid-free particle method. We incorporate several techniques
from the study of vortex sheet motion in computational fluid dynamics [3].

2 Status of Effort

The investigators made progress in developing the Lagrangian formulation of charged par-
ticle dynamics, deriving a regularized system that satisfies charge neutrality and periodic
boundary conditions, implementing an adaptive particle insertion scheme, and performing
test computations. The work is being written up for publication [4]. The following section
summarizes the approach and presents numerical results showing the method's capability.
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3 Accomplishments/New Findings

Here we summarize the accomplishments and new findings obtained during the award period.
Complete details are in an article being prepared for publication [4]. We start by recalling the
standard Eulerian formulation of charged particle dynamics in terms of the Vlasov-Poisson
equations.

3.1 Eulerian Formulation

Let f(x, v, t) be the electron probability density function (pdf) in phase space, satisfying

f(x, v, t) >_ 0, f(x, v, t)dxdv = 1, (1)

where x is space (here 1D), v is velocity, and t is time. The pdf evolves by the Vlasov
equation,

ft + vf. - Ef, = 0, (2)

where the electric field E(x, t) is given by E = -¢ and the potential function O(x, t) satisfies
the Poisson equation,

-¢X = p, (3)

with periodic boundary conditions. The charge density is

p(x,t) = -f f(x, v, t)dv + 1. (4)

The Vlasov-Poisson equations (2-4) describe the evolution of the pdf f(x, v, t). Next we
describe an equivalent Lagrangian formulation.

3.2 Lagrangian Formulation

Consider the charge flow map,

where (a, 0) are Lagrangian parameters labeling a charged particle at location (x, v) in phase

space at time t. This is shown schematically in Figure 1.
The equations defining the flow map are,

xt(a,O,t) = v(a,O,t), (6)

Vt(a, ,t0 = fj (k(x(a,/3, t),x(&, ,t)) + x(5, ý,t))wo(&, 3)d&d/3 + x(a, 3, t), (7)

where
1k(x, y) = -sign(x - y) 

(8)
2

is the electric field kernel and w0(a, /) is the initial charge distribution. Equations (6-7) are
simply Newton's equations in first order form. The integral on the right side of (7) gives the
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Figure 1: Charge flow map, (a, 0): parameter space, (x, v): phase space.

electric field in terms of the flow map and initial charge distribution. We assume here that
the spatial domain is 1D and the solution is periodic with period L = 1, but these are not
essential restrictions. Equations (6-8) are the desired Lagrangian formulation for charged
particle dynamics in phase space.

3.3 Particle Discretization

We consider a cold stream in which the charge is supported on a curve in phase space, so

that the flow map reduces to the form x(a, t), v(a, t). We use the midpoint rule to discretize
the electric field integral in (7). Then ai = (i - !)/N, i = 1 : N are the discretization points
in parameter space and (xi(t), vi(t)) = (x(a2, t), v(ai, t)) are the corresponding particles in
phase space. The discrete evolution equations are

x /. = V , (9 )

N

vI= - (k(x,,xj) +xj)wj + xi, (10)
j=l

where wj = 1/N are the quadrature weights. The discontinuity in the kernel is handled by
setting k(x, x) = 0. The 4th order Runge-Kutta method is used for timestepping.

Figure 2 shows the numerical results for a perturbed uniform stream with N = 50, At
0.004. The solution is plotted over two periods, 0 < x < 2. Two types of particles are plotted,
active (red) and passive (blue). The active particles, (xi, vi), carry charge and contribute to
the sum defining the electric field. The passive particles have Lagrangian parameter values
at the endpoints of the intervals in parameter space. The passive particles are used in the
adaptive particle insertion scheme, described below.

The stream rolls up into a vortex in phase space. The vortex is associated with particle
trapping as particles cycle back and forth in the given period. Other particles escape and
are advected into neighboring periods, leading to the formation of long thin filaments in the
stream. The simulation loses accuracy as time proceeds, as shown by the self-intersection
of the stream at late times. Simply using a smaller time step At and a larger number of
particles N is not a practical way of maintaining resolution. Moreover, as shown in Figure 3a,
even as the computation is refined, the inner portion of the spiral is tangled. We believe
this tangling is due to a singularity in the exact solution. To address these issues we employ
regularization and adaptive particle insertion, as explained in the next two sections.



4

t 0

t 1

-2-2

t 8

0 0.2 0.4 0.6 0.8 1 1 .2 1.4 1.6 1.8 2

Figure 2: Cold stream, N 50, A~t = 0.004, active particles (red), passive particles (blue).
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Figure 3: Cold stream, closeup of spiral core at t =8. (a) The solution converges slowly
as N increases and At decreases. The inner portion of the spiral remains tangled. (b) The
regularized solutions with J > 0 roll up smoothly and are free of tangling.
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3.4 Regularization

Consider the following regularized approximation of the electric field kernel,

1 x-y

kj(x,y) = 2 ((x - y) 2 + J2)1/2' (11)

where 6 > 0 is a smoothing parameter. The exact kernel, in equation (8), is recovered in the
limit 6 -* 0. Using the regularized kernel we obtain a regularized system,

xt(a,t) = v(a,t), (12)

vt(a,t) = -] ks(x(a,t),x(&,t))wo(d)dd + -] k6(x(a,t),y)dy - a, (13)

where the constants T and a are chosen to enforce charge neutrality and periodicity [4]. Using
the midpoint rule as before, we obtain a particle discretization of the regularized system.
As shown in Figure 3b, the solution of the regularized system is free of tangling for 6 > 0.
But there is still a need for adaptive particle insertion to maintain resolution without using
prohibitively large N.

3.5 Adaptive Particle Insertion

To maintain resolution as the curve evolves, we adaptively insert new particles at each time
step [3]. Figure 4 defines two quantities, (a) di: chord length of the interval, (b) d2 : distance
from the active particle to the chord. If either of these quantities is larger than a user-specific
value, the interval is split, as depicted in Figure 4c. After an interval is split, the quadrature
weights are reset.

(a) (b)

d2

(c)

Figure 4: Adaptive particle insertion. (a) di: chord length, (b) d2: particle-chord distance,
(c) panel splitting; the active particle becomes passive and two new passive particles are
inserted using quadratic interpolation with respect to the Lagrangian parameter.
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3.6 Numerical Results

Figure 5a shows a simulation of the regularized system (11-13) with 6 = 0.1 and adaptive
particle insertion. The initial number of particles is N = 400 and the final number is
N = 2920. To clarify the charge transport in phase space, the charge coming from each
initial period is colored (e.g. blue: 0 < x < 1, red: 1 < x < 2, etc.). The closeup in
Figure 5b shows that the fine scale structures are well-resolved and free of tangling. The
results suggest the presence of chaotic dynamics due to a heteroclinic tangle.

Figure 6 shows a preliminary simulation of the cold two-stream instability. In this case
there are two streams of particles moving in opposite directions. The initial charge density
was perturbed. The streams roll up smoothly into a vortex in phase space. This is a step
towards extending the code to handle warm charge distributions.

3.7 Ongoing Work

(a) We're performing various checks of the numerical accuracy, e.g. energy conservation, time
integration (for 6 = 0 and ý > 0).

(b) We believe that a cusp singularity forms at a finite time in the charge distribution and
electric field as a function of the spatial x-coordinate. We will document this numerically
using spectral analysis (FFT).

(c) We're studying the phenomenon of particle trapping. The aim is to determine how much
of the charge remains trapped in its original period, how much is advected and trapped
in neighboring periods, and how much undergoes free streaming. Charge transport is a
fundamental issue and the present approach may well provide new insights.

(d) The code is being extended to handle warm distributions, i.e. those in which the charge
is distributed over a region in phase space, as opposed to simply a curve or a finite set of
curves. This will enable us to study Landau damping and compare with previous results.

(e) We intend to perform a detailed comparison with PIC simulations.

3.8 Summary

The results presented in the previous sections demonstrate the capability of the grid-free
particle approach under development. The method is especially well suited for studying
charge transport and filamentation. We believe this approach will substantially improve the
accuracy and efficiency of plasma simulations for a wide range of applications.

4 Personnel Supported

The project provided 50% support for a postdoc, Lyudmyla Barannyk. Dr. Barannyk is
starting a tenure-track position at the University of Idaho in August, 2007. The project
extends the work started last summer by Benjamin Sonday when he was an undergraduate.
Mr. Sonday is currently a graduate student at Princeton University with support from a
Department of Energy Computational Science Graduate Fellowship.
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Figure 5: Cold stream, long time evolution, regularized (6 = 0.1), adaptive particle insertion.
Charge coming from each initial period is colored, e.g. blue: 0 < x < 1, red: 1 < x < 2, etc.
(a) time: 0 <o t 20 initial N = 400, final N = 2920, (b) closeup at t = 20.
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Figure 6: Cold two-stream instability.

5 Publications

The work accomplished during the support period is being prepared for publication [4]. The
article will be sent to the program manager, Dr. Fariba Fahroo, upon completion. The group
has published several previous articles with AF support [5-7].

6 Interactions/Transitions

The work supported by this award was presented at three conferences.

"* American Physical Society, Division of Plasma Physics, Philadelphia, November, 2006

"* Society for Industrial and Applied Mathematics, Conference on Computational Science
and Engineering, Costa Mesa, February, 2007

"* International Congress on Industrial and Applied Mathematics, Zurich, July, 2007

It will also be presented at the upcoming APS meeting of the Division of Plasma Physics,

Orlando, November, 2007. The project is part of a larger effort supported by AFOSR
(FA9550-05-1-0199, Major David Byers) in collaboration with Andrew Christlieb at Michigan
State University.
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